

How similar are different cultures' concepts of colour?

Do different languages share equivalent basic colour terms ?

```
Basic Color Terms: Their Universality and Evolution
Berlin & Kay }1969
1 & 2 Light and dark (i.e. 'black' & 'white')
3 Red
4 & 5 Green & Yellow
6 Blue
7 Brown
8-11 Purple Pink Orange Grey
```


LGN - receptive field properties of 3 different channels

opponent colour response functions

relative response of red or yellow
relative response
of green or blue

Cone activation colour space

Cone activation colour space

Neural colour axes in V1

Tuning direction in colour space (deg)

Neural colour axes in V1 \& V2

Tuning direction in colour space (deg)

V1: Hanazawa et al (2000) ${ }^{[R e f 7]}$

10 deg. histogram (360 scale)

> V1: Hanazawa et al (2000) V2: Kiper 7$]$ et al (1997) ${ }^{[\operatorname{Ref} 9]}$

Similar looking?

- but correlation coefficient $=0.29$, not significant

30 deg. histogram (360 scale)

And, at the far end of the 'ventral' visual pathway...

Komatsu et al (1992)

Pooled colour response fields of 19 IT neurons

Yasuda et al (2010)

Conway et al. (2007) ${ }^{[R e f 12]}$
Lafer-Sousa \& Conway (2013) ${ }^{[\operatorname{Ref} 13]}$
Colour pathway 'globs' revealed by fMRI

Stereoscopic Vision

BINOCULAR INTERACTION - PERCEPTION

fixation plane

There is a limited range of depths in front, and behind, of the fixation plane in which a single image is seen; outside this range there is double vision.
= Panum's zone of fusion (c. 1860)

Peter Panum

Professor of Physiology
University of Kiel 1853-1864

BINOCULAR INTERACTION - OPTICS

fixation plane - images of objects located on the plane of fixation fall at corresponding locations in each retina.

Objects at locations in front, or behind the fixation plane produce images at noncorresponding locations in each retina.
e.g.

3 items along the same line of sight in the left eye are imaged at 3 separate locations in the right eye.

FUNCTIONAL ARCHITECTURE OF PRIMARY VISUAL CORTEX

David Hubel \& Torsten Wiesel

V1 (left)

two independent modular subsystems:

- ocular dominance columns
- orientation columns

LGN (left)

6 monocular layers;

- each layer maps a right, or a left eye half-retina

Typical methodology for testing binocular disparity tuning under conditions of ocular paralysis and anaesthesia.

Due to paralysis, the ocular axes diverge, separating the receptive fields in either eye, and allowing independent (dichoptic) stimulation by two separate bar stimuli. As there is only one stimulus (per receptive field) against a plain background, this is a test of absolute disparity tuning

The following slide shows the four varieties of disparity tuning that have typically been observed in several separate studies of area V1, V2 \& V3.

Typical absolute disparity tuning curves obtained in areas $\mathrm{V} 1, \mathrm{~V} 2$ \& V 3

Relative disparity is the difference between the absolute disparities of a pair of objects.

Absolute disparity is the difference in the angular location of an individual object, between the images formed in each eye.

Absolute Disparity v. Relative Disparity

ABSOLUTE DISPARITY
Value is dependent on eye vergence
Gives depth with respect to fixation plane (horopter)
Not very sensitive:

- threshold for detecting depth in front/behind fixation plane
is 6 min, i.e. $\pm 8 \mathrm{~cm}$ at 1.0 m .

RELATIVE DISPARITY

Value is independent of eye vergence
Gives relative depth irrespective of fixation plane (horopter)
Very sensitive:

- threshold for detecting depth in front/behind fixation plane is 6 sec , i.e. $\pm 3 \mathrm{~mm}$ at 1.0 m .

Absolute Disparity v. Relative Disparity

ABSOLUTE DISPARITY
Value is dependent on eye vergence
Gives depth with respect to fixation plane (horopter)
Not very sensitive:

- threshold for detecting depth in front/behind fixation plane
is 6 min, i.e. $\pm 8 \mathrm{~cm}$ at 1.0 m .
Characterises ‘DORSAL SYSTEM' function (human fMRI)

RELATIVE DISPARITY

Value is independent of eye vergence
Gives relative depth irrespective of fixation plane (horopter)
Very sensitive:

- threshold for detecting depth in front/behind fixation plane is 6 sec , i.e. $\pm 3 \mathrm{~mm}$ at 1.0 m .

Characterises 'VENTRAL SYSTEM' function (human fMRI)

Patient DF (bilateral area LO lesions \& agnosic)

brain lesions in patient DF (case of carbon monoxide poisoning)

area LO in a normal subject

Comparison of neural selectivity for absolute \& relative disparity in areas V1 V2 V3 V3A V4 \& V5 [Refs 17-21]

Stimulus set-up
Dot stimulus is composed of centre \& surround annulus differing in disparity
Receptive field of test neuron fits inside the centre region.

\longrightarrow predicted shift (0.40)
\longrightarrow observed shift (0.32)

$$
\text { shift ratio }=\frac{0.32}{0.40}=0.8
$$

[shift ratio = 1 implies full selectivity for relative disparity; shift ratio $=0$ implies selectivity for absolute disparity]

Simulated transparent, revolving cylinder.
Task: identify direction ($\mathrm{L} v \mathrm{R}$) of front surface

DF outperforms most normal subjects...!

Krug \& Parker (2011) ${ }^{[22]}$ Neurons in area V5 signalling relative disparity

Stimulus: superimposed transparent planes of dots with opposite directions of motion \& differing disparity
 has preferred direction

Krug \& Parker (2011) ${ }^{[22]}$ Neurons in area V5 signalling relative disparity

preferred (concave) curvature
Stereo Left
eye
Right
eye
 $\xrightarrow{14}$
non- preferred (convex) curvature \qquad
 $11 \xlongequal{1}$ Ane

Absolute Disparity v. Relative Disparity

RELATIVE DISPARITY

Value is independent of eye vergence
Gives relative depth irrespective of fixation plane (horopter)
Very sensitive:

- threshold for detecting depth in front/behind fixation plane is 6 sec , i.e. $\pm 3 \mathrm{~mm}$ at 1.0 m .

Characterises 'VENTRAL SYSTEM' function (human fMRI)

- especially for relative disparity between nearby, adjacent surfaces: e.g . for detecting slant, curvature.

In 'DORSAL SYSTEM' may help top discriminate depth planes e.g. in detecting movement behind foliage (?)

Cyclopean vision

Random dot stereograms demonstrate that stereoscopic mechanisms can process 'raw' visual texture. A preliminary stage of contour extraction or object recognition is not required; rather, stereoscopic mechanisms can produce their own contours and provide an independent mode of form recognition.

To do so the brain must solve the (so-called) 'correspondence problem' - find the correct dot in the right eye to match each dot in the left eye (or vice versa).

Cyclopean vision - 'free fusion'

Random dot stereograms demonstrate that stereoscopic mechanisms can process 'raw' visual texture. A preliminary stage of contour extraction or object recognition is not required; rather, stereoscopic mechanisms can produce their own contours and provide an independent mode of form recognition.
To do so the brain must solve the (so-called) 'correspondence problem' - find the correct dot in the right eye to match each dot in the left eye (or vice versa).

Below, $\mathbf{a} \& \mathbf{b}$, and $\mathbf{a}^{\prime} \& \mathbf{b}^{\prime}$, are two identical stereograms, that display a number (from 0-9) in front of the background, when 'solved' by converging. At the same time, the same number will appear as a cut-out (i.e. behind the background) in the stereo pair formed by \mathbf{b} and \mathbf{a} '. Foreground and background depth is reversed if the stereograms are solved by diverging the eyes, i.e. to focus on a plane behind the screen. Typically, this is more difficult.

a

b

a^{\prime}

b^{\prime}

'Magic eye' pictures are based on exactly the same principle
(but normally require divergent free fusion to give the intended depth percept)

